PROJECTS
AeroMIT at AICECS 2023 presenting a paper on Precise Payload Delivery via Unmanned Aerial Vehicles: An Approach Using Object Detection Algorithms
AICECS 2023
18th International Conference
on Machine Vision 2023
Aeromit at the 18th International Conference on Machine Vision Applications , 2023 held at Hamamatsu, Japan. The members presented a paper on Safe Landing Zone Detection for UAVs using Image Segmentation and Super Resolution. This conference was attended by executives from companies like Panasonic, Hitachi, Toyota, Seimens, who greatly appreciated our work
Autonomous Drone for medical supply during COVID-19 pandemic
The autonomous drone project that was taken up before was modified to a larger scale to fulfill the requirements of this project. The multicopter that we designed can carry a 5 Kg Payload within a range of 10 km with an endurance of 30 mins. Extensive research and testing were done to finally get a feasible and efficient hexacopter design for the required mission. This project is still under the prototyping phase; we can deploy them to transport emergency items to remote places once completed.
VTOL Hybrid Bicopter
The Hybrid bicopter was designed to transition from fixed-wing mode to VTOL mode at a flip of a switch. The aircraft also had object recognition capabilities, made possible by an onboard camera module and Convolutional Neural Networks.
Experimental Canard Aircraft (ECA)
A canard configuration aircraft was designed by incorporating various features such as leading-edge sweep and a polyhedral tapered wing planform with a pusher-type propulsion system.
The team-based this design on an earlier project of a simple canard aircraft adding more features and evolving existing ones. The effect of these features on the flight characteristics of a small-scale RC aircraft was observed and documented.
FBW for Plane
The Fly-by-wire (FBW) system was designed to replace the conventional manual flight controls of an aircraft with an electronic interface. The system interprets the pilot’s control inputs as a desired outcome and calculate the control surface positions required to achieve that outcome This results in various combinations of rudder, elevator, aileron and engine controls in different situations using a closed feedback loop. The FBW system helps in a very stable flight in case of harsh pilot inputs or even during bad weather conditions.
Autonomous Hex
This project aimed at developing an autonomous hexacopter that can be used for operations such as payload delivery, emergency medical supply and unmanned surveillance. This was achieved using the Pixhawk Autopilot Technology.
The flight controller can be programmed to complete a given mission from takeoff to landing based on just the flick of a switch. We have used an electric propulsion system which makes the Unmanned Aerial Vehicle(UAV) environment friendly as well. The UAV has a payload capacity of 2kg and a range of 6km.
Delaying Aerodynamic Stall for Fixed-Wing Aircraft
Delaying Aerodynamic stall is one of the greatest challenges in the field of aerodynamics as this phenomenon leads to a significant loss in lift and has a major impact on the aircraft’s stability. In this paper, we attempt to delay stall by using a pressure outlet and enhancing the critical performance parameters.
Stability Improvement of VTOL Fixed Wing Bi-copter
A VTOL Fixed Wing Bi-copter is a Boeing V-22 Osprey inspired design, having the capability of both vertical take-off and landing, as well as the ability to transition to fixed-wing flight mid-air. Stabilizing such a complex aerial vehicle is multifaceted and intricate. In this paper, we deal with the challenges faced while stabilizing a UAV of such calibre.